skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amico, Luigi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We discuss an interferometric scheme employing interference of bright solitons formed as specific bound states of attracting bosons on a lattice. We revisit the proposal of Castin and Weiss [Phys. Rev. Lett. vol. 102, 010403 (2009)] for using the scattering of a quantum matter-wave soliton on a barrier in order to create a coherent superposition state of the soliton being entirely to the left of the barrier and being entirely to the right of the barrier. In that proposal, it was assumed that the scattering is perfectly elastic, i.e. that the center-of-mass kinetic energy of the soliton is lower than the chemical potential of the soliton. Here we relax this assumption: By employing a combination of Bethe ansatz and DMRG-based analysis of the dynamics of the appropriate many-body system, we find that the interferometric fringes persist even when the center-of-mass kinetic energy of the soliton is above the energy needed for its complete dissociation into constituent atoms. 
    more » « less
  2. We study a gas of attracting bosons confined in a ring shape potential pierced by an artificial magnetic field. Because of attractive interactions, quantum analogs of bright solitons are formed. As a genuine quantum-many-body feature, we demonstrate that angular momentum fractionalization occurs and that such an effect manifests on time of flight measurements.As a consequence, the matter-wave current in our system can react to very small changes of rotation or other artificial gauge fields. We worked out a protocol to entangle such quantum solitonic currents, allowing us to operate rotation sensors and gyroscopes to Heisenberg-limited sensitivity.Therefore, we demonstrate that the specific coherence and entanglement properties of the system can induce an enhancement of sensitivity to an external rotation. 
    more » « less